
RECORDS 



RECORDS WITHIN RECORDS 

There is nothing to prevent us from placing records inside of 
records (a field within a record): 

 

Date_Type definesa record 

  day, month, year isoftype num 

Endrecord 

 

Student_Type definesa record 

  name isoftype string 

  gpa isoftype num 

  birth_day isoftype Date_Type 

  graduation_day isoftype Date_Type 

endrecord 

This name is now 

a type which can 

be used anywhere 

a type such as 

“Num” can be 

used. 

What are these called? 

Types 

LB 



RECORD WITHIN RECORDS 

Date_Type: 

 

 

Student_Type: 

 

 

 

 

 

 

bob isoftype Student_Type 

bob.birth_day.month <- 6 

 day         month        year 

 day         month        year 

name gpa 

 day         month        year birth_day 

graduation_day 



TYPES VS. VARIABLES 

 TYPE Definitions 

 Create templates for new kinds of  variables 

 Do not create a variable – no storage space is 

allocated 

 Have unlimited scope 

 

 VARIABLE Declarations 

 Actually create storage space 

 Have limited scope - only module containing the 

variable can “see” it 

 Must be based on an existing data type 



DYNAMIC MEMORY AND POINTERS 



DYNAMIC VS. STATIC 

Static (fixed in size) 

Sometimes we create data structures that 

are “fixed” and don’t need to grow or 

shrink. 

Dynamic (change in size) 

Other times, we want the ability to increase 

and decrease the size of our data 

structures to accommodate changing 

needs. 



STATIC DATA 

 Static data is data declared “ahead of time.” 

 It is declared in a module (or main algorithm) and 

“lives” for as long as that module is active. 

 If we declare more static variables than we need, 

we waste space. 

 If we declare fewer static variables than we need, 

we are out of luck. 

 Often, real world problems mean that we don’t 

know how many variables to declare, as the 

number needed will change over time. 



DYNAMIC DATA 

 Dynamic data refers to data structures which can grow 

and shrink to fit changing data requirements. 

 We can allocate (create) additional dynamic variables 

whenever we need them.  

 We can de-allocate (kill) dynamic variables whenever we 

are done with them. 

 A key advantage of dynamic data is that we can always 

have a exactly the number of variables required - no more, 

no less. 

 For example, with pointer variables to connect them, we 

can use dynamic data structures to create a chain of data 

structures called a linked list. 



NOTE 

 Dynamic data gives us more flexibility 

 Memory is still limited 

 But now we can use it where we need it  

 And we can determine that while the program is 

running 

LB 

Examples? 
 Printer Queues 
 Airliners 
 uh, everything? 



A VIEW OF MEMORY 

Algorithm and Module Code 

(What you wrote) 

 

Stack (Static Area) 

(Store stuff here) 

Heap (Dynamic Area) 

(Store stuff here) 

 

LB 



A LIST EXAMPLE 

 We must maintain a list of data 

 Sometimes we want to use only a little memory: 

 

 

 Sometimes we need to use more memory 

 

 

 Declaring variables in the standard way won’t 
work here because we don’t know how many 
variables to declare 

 We need a way to allocate and de-allocate data 
dynamically (i.e., on the fly) 

 

 



THE STACK 

 Recall the activation stack 

 The stack can expand, but as for the data… 

 Each frame contains static (fixed size) data 

Algo var1 var2 var3 

Proc_1 this_var that_var 

The number of 

variables needed 

come from the 

“isoftype”  

statements. 



THE STACK AND HEAP 

•The heap is memory not used by the stack 

• As stack grows, heap shrinks 

• Static variables live in the stack 

• Dynamic variables live in the heap 

Main   this_var            that_var                  my_num_ptr 4 7 

12 

What kind of variable is this??? 

Heap 

Stack 

LB 



WHAT? 

 We know (sort of) how to get a pointer variable 

 

     my_num_ptr isoftype Ptr toa Num 

 

 But how do we get it to point at something? 

 

LB 



THE BUILT-IN FUNCTION NEW() 

Takes a type as a parameter 

Allocates memory in the heap for the 

type 

Returns a pointer to that memory 

 

  my_num_ptr <- new(Num) 

  dynamic_string <- new(String) 

  list_head <- new(Node) 



ACCESSING DYNAMIC DATA VIA POINTERS 

 When we “follow a pointer”, we say that we 

dereference that pointer 

 The carat (^) means “dereference the pointer” 

 my_num_ptr^ means ”follow my_num_ptr to 

wherever it points” 

 My_num_ptr^ <- 43 is valid 

43 

Main   my_num_ptr 

Heap: Dynamic 

Stack: Static 



 

 

Ptr1 isoftype Ptr toa Num 

Ptr2 isoftype Ptr toa Num 

Ptr1 <- new(Num) 

Ptr1^ <- 5 

Ptr2 <- Ptr1 

Print(Ptr1^, Ptr2^) 

Ptr2^ <- 7 

Print(Ptr1^, Ptr2^) 

  

Num 

5   5 

 

5   5 

7   7 

Ptr1 

Ptr 

Ptr2 

Ptr 

5 7 

POINTER ANIMATION 

OF NUMBERS static dynamic 



A record to hold two items of data - a name 

and a SSN: 

 

Student definesa record 

  name isoftype String 

  SSN isoftype num 

endrecord 

 

And a pointer to a Student record: 

 

current isoftype ptr toa Student 

current <- new(Student) 

name 

SSN 


